Human gamma-tubulin functions in fission yeast

نویسندگان

  • T Horio
  • B R Oakley
چکیده

gamma-Tubulin is a phylogenetically conserved component of microtubule-organizing centers that is essential for viability and microtubule function. To examine the functional conservation of gamma-tubulin, we have tested the ability of human gamma-tubulin to function in the fission yeast Schizosaccharomyces pombe. We have found that expression of a human gamma-tubulin cDNA restores viability and a near-normal growth rate to cells of S. pombe lacking endogenous gamma-tubulin. Immunofluorescence microscopy showed that these cells contained normal mitotic spindles and interphase microtubule arrays, and that human gamma-tubulin, like S. pombe gamma-tubulin, localized to spindle pole bodies, the fungal microtubule-organizing centers. These results demonstrate that human gamma-tubulin functions in fission yeast, and they suggest that in spite of the great morphological differences between the microtubule-organizing centers of humans and fission yeasts, gamma-tubulin is likely to perform the same tasks in both. They suggest, moreover, that the proteins that interact with gamma-tubulin, including, most obviously, microtubule-organizing center proteins, must also be conserved. We have also found that a fivefold overexpression of S. pombe gamma-tubulin causes no reduction in growth rates or alteration of microtubule organization. We hypothesize that the excess gamma-tubulin is maintained in the cytoplasm in a form incapable of nucleating microtubule assembly. Finally, we have found that expression of human gamma-tubulin or overexpression of S. pombe gamma-tubulin causes no significant alteration of resistance to the antimicrotubule agents benomyl, thiabendazole and nocodazole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fission yeast gamma-tubulin is essential for mitosis and is localized at microtubule organizing centers.

gamma-Tubulin exists in fission yeast as the product of an essential gene, encoding a 446 amino acid protein that is 77.3% identical to Aspergillus nidulans gamma-tubulin. The gene disruption caused cell lethality, displaying condensed, undivided chromosomes with aberrant spindle structures. Anti-gamma-tubulin staining showed that gamma-tubulin is located, throughout the wild-type cell cycle, a...

متن کامل

Fission yeast Pcp1 links polo kinase-mediated mitotic entry to γ-tubulin-dependent spindle formation

The centrosomal pericentrin-related proteins play pivotal roles in various aspects of cell division; however their underlying mechanisms remain largely elusive. Here we show that fission-yeast pericentrin-like Pcp1 regulates multiple functions of the spindle pole body (SPB) through recruiting two critical factors, the gamma-tubulin complex (gamma-TuC) and polo kinase (Plo1). We isolated two pcp...

متن کامل

Functional dissection of the gamma-tubulin complex by suppressor analysis of gtb1 and alp4 mutations in Schizosaccharomyces pombe.

In fission yeast, gamma-tubulin (encoded by the gtb1+ gene), Alp4 (Spc97/GCP2), and Alp6 (Spc98/GCP3) are essential components of the gamma-tubulin complex. We isolated gtb1 mutants as allele-specific suppressors of temperature-sensitive alp4 mutations. Mutation sites in gtb1 mutants and in several alp4 alleles were determined. The majority of substituted amino acids were mapped to a small area...

متن کامل

Fission yeast mto2p regulates microtubule nucleation by the centrosomin-related protein mto1p.

From an insertional mutagenesis screen, we isolated a novel gene, mto2+, involved in microtubule organization in fission yeast. mto2Delta strains are viable but exhibit defects in interphase microtubule nucleation and in formation of the postanaphase microtubule array at the end of mitosis. The mto2Delta defects represent a subset of the defects displayed by cells deleted for mto1+ (also known ...

متن کامل

Microtubule Nucleation at Non-Spindle Pole Body Microtubule-Organizing Centers Requires Fission Yeast Centrosomin-Related Protein mod20p

BACKGROUND Many types of differentiated eukaryotic cells display microtubule distributions consistent with nucleation from noncentrosomal intracellular microtubule organizing centers (MTOCs), although such structures remain poorly characterized. In fission yeast, two types of MTOCs exist in addition to the spindle pole body, the yeast centrosome equivalent. These are the equatorial MTOC, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 126  شماره 

صفحات  -

تاریخ انتشار 1994